Improving diffusive mass transport in hierarchically structured Fischer-Tropsch catalysts

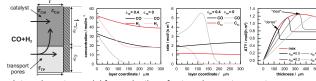
Motivation and Background

- Mass transport processes in porous catalysts influence selectivity and reaction rate in the Fischer-Tropsch synthesis
- Results indicate that diffusive transport inside the catalyst lavers can be enhanced by insertion of transport pores due to increased porosity
- □ As increased porosity reduces amount of catalyst, optimization of additional porosity is required
- □ Benefit is strongly dependent on effective diffusion inside transport pores

Research Needs and Objectives

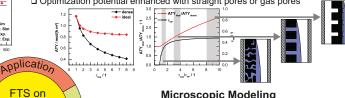
- □ Designing, experimental implementation and iterative optimisation of pore structures
- □ Improvement of current catalyst and reactor models
- □ Focus on transport pores under reaction conditions
 - Cylindrical transport pores with smallest possible tortuosity and a diameter of aprrox. 10 µm
 - · Transport pores not or only partially filled with liquid
- □ Omniphobic/oleophobic pore surfaces

Catalyst Layers for FT Synthesis

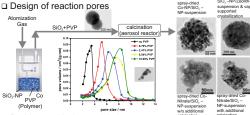

- □ Conventional powder catalyst based on Al₂O₂ (Puralox, 5 µm)
- □ Mesoporous system impregnated with active material (20% Co, 1% Re)
- □ Layer preparation: Spraying suspension on metallic carrier
- □ Subsequent compression enables adjusting of transport pore fraction

catalyst particle

□ Final calcination to yield mechanically stable layers

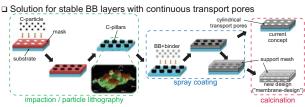

Process Simulation ☐ Investigation of ideal pore structure for differential reactor

- Optimization of layer thickness and transport pore fraction
- ☐ Heat balance shows no influence of temperature profiles



- ☐ Integral reactor model for evaluation of external mass transport
- □ Liquid film formation is negligible
- □ Parameter estimation: relatively high tortuosity inside transport pores

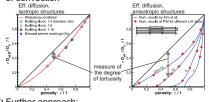
□ Optimization potential enhanced with straight pores or gas pores

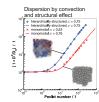


Layer Synthesis

□ Problems with the particle layer

- · Mechanical stability of the particle layers · Control of pore size distribution of layer systems
- → Stabilisation through addition of NP binder → No continuous 10 μm pores




Microscopic Modeling

- Analysis of the transportmorphology relationship:
 - · Modeling of porous layer geometry with building blocks

- · Scale resolving calculation of transport in the pore space
- · Determination of efective transport coefficients via local volume averaging (LVA)
- □ Diffusion: significant tortuosity increasing effect in highly anisotropic media
- □ Dispersion: significant beneficial effect of transport pores in the presence of convection

□ Further approach:

hierarchically structured

catalysts

- · Quantification of hindered diffusion in the layer system by further development of the LVA method with respect to reactive flows
- · Quantification of multiphase transport including chemical reactions in partially filled pore space
- Consideration of Knudsen diffusion in gas phase

Publications

- . Zeng, A.P. Weber, Aerosol synthesis of nanoporous silica particles with controlled pore size distribution, J. Aerosol Sci. 76, 1-12, 2014 . Zeng, A.P. Weber, Synthese von SiO_z-Katalysatorträgern mit einstellbarer Porengröße durch Sprühtrocknung und Kalzinierung, Chem. Ing. Tech
- 86, 328-334, 2014
- H. Becker, R. Güttel, T. Turek, Optimization of catalysts for Fischer-Tropsch synthesis by introduction of transport pores, Chem. Ing. Tech. 86, 544-549, 2014
- □ L Zeng, A.P. Weber, Herstellung von porösen Nanopartikelschichten auf beliebigen Substraten mittels Niederdruckimpaktion, Chem. Ing. Tech. 86, 238-244, 2014
 □ E. Monaco, G. Brenner, K.H. Luo, Numerical simulation of the collision of two micro-droplets with a pseudopotential multiple-relaxation-time lattice
- □ E. Worlaco, G. Frehner, K.-h. Lob, Normerical similation of the collision of two micro-diopiets with a pseudopotential multiplier-elaxation-raine fature. Boltzmann model, Microfluid. Nanofluid. 16, 329-346, 2014
 □ E. Dück, S. Sdrenka, Y. Ma, G. Brenner, Numerische Untersuchungen der hydrodynamischen Dispersion in hierarchisch strukturierten porösen Medien, Chem. Ing. Tech., submitted 201502
 □ H. Becker, R. Güttel, T. Turek, Enhancing internal mass transport in Fischer-Tropsch catalyst layers utilizing transport pores, Catal. Sci. Technol., submitted 201505

- Networking in SPP 1570

 ☐ Schwieger (FAU Erlangen): one-step synthesis of Co-Zeolith-BB for FTS
 ☐ Dittmeyer (KIT): one-step spray drying synthesis of Cu-ZnO for DME
- Spiecker (FAU Erlangen): TEM tomography and geometrical characterization of building blocks
 □ Gurlo, Schwarze (TU Berlin):
- preparation of porous catalyst support, planned

Chemical and Electrochemical Process Engineering Particle Technology
Applied Mechanics

Turek Weber Brenner ⊢ ≼ ω